Some I-convergent triple sequence spaces defined by a sequence of modulus function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some I-Convergent Double Sequence Spaces Defined by a Modulus Function

In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Number Theory, trigonometric series, summability theory, probability theory, optimization and approximation theory. In this article we introduce the double sequence spaces     2 0 2...

متن کامل

Some Strongly Convergent Difference Sequence Spaces Defined by a Sequence of Modulus Functions

In the present paper we introduce some strongly convergent difference sequence spaces defined by a sequence of modulus functions F = (fk). We also study some topological properties and inclusion relations between these spaces. AMS Mathematics Subject Classification (2010): 40A05, 40C05, 46A45.

متن کامل

On Some Generalized Difference Paranormed Sequence Spaces Associated with Multiplier Sequence Defined by Modulus Function

In this article we introduce the paranormed sequence spaces ( f ,Λ,∆m, p), c0( f ,Λ,∆m, p) and l∞( f ,Λ,∆m, p), associated with the multiplier sequence Λ = (λk), defined by a modulus function f . We study their different properties like solidness, symmetricity, completeness etc. and prove some inclusion results.

متن کامل

Some multiplier lacunary sequence spaces defined by a sequence of modulus functions

In the present paper we introduce some multiplier sequence spaces defined by a sequence of modulus functions F = (fk). We also make an effort to study some topological properties and inclusion relations between these spaces.

متن کامل

Some New Type of Multiplier Sequence Spaces Defined by a Modulus Function

The main purpose of this paper is to use the idea of n-norm and a modulus function to construct some multiplier sequence spaces with base space X, a real linear n-norm space. We study the spaces for linearity, existence of paranorm, completeness and some inclusion properties involving these spaces. Mathematics Subject Classification: 40A05, 46A45, 46E30

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2017

ISSN: 0716-0917

DOI: 10.4067/s0716-09172017000100007